From Wikipedia, the free encyclopedia
Sound measurements |
---|
Sound pressure p, SPL |
Particle velocity v, SVL |
Particle displacement ξ |
Sound intensity I, SIL |
Sound power Pac |
Sound power level SWL |
Sound energy |
Sound energy density E |
Sound energy flux q |
Acoustic impedance Z |
Speed of sound c |
Audio frequency AF |
This article is about the measurement of audible sound. For the music album, see Sound Pressure Level.
Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average, or equilibrium) atmospheric pressure caused by a sound wave. Sound pressure in air can be measured using a microphone, and in water using a hydrophone. The SI unit for sound pressure p is the pascal (symbol: Pa). Contents[hide] |
[edit] Instantaneous sound pressure
The instantaneous sound pressure is the deviation from the local ambient pressure
The effective sound pressure is the root mean square of the instantaneous sound pressure over a given interval of time (or space).
Total pressure

= local ambient atmospheric (air) pressure,
= sound pressure deviation.
[edit] Intensity
In a sound wave, the complementary variable to sound pressure is the acoustic particle velocity. Together they determine the acoustic intensity of the wave. The local instantaneous sound intensity is the product of the sound pressure and the acoustic particle velocity.[edit] Acoustic impedance
For small amplitudes, sound pressure and particle velocity are linearly related and their ratio is the acoustic impedance. The acoustic impedance depends on both the characteristics of the wave and the transmission medium.The acoustic impedance is given by[1]
- Z is acoustic impedance or sound impedance
- p is sound pressure
- U is particle velocity
[edit] Particle displacement
Sound pressure p is connected to particle displacement (or particle amplitude) ξ by.
,
where:
Symbol | SI Unit | Meaning |
---|---|---|
p | pascals | sound pressure |
f | hertz | frequency |
ρ | kg/m³ | density of air |
c | m/s | speed of sound |
v | m/s | particle velocity |
![]() ![]() | radians/s | angular frequency |
ξ | meters | particle displacement |
Z = c • ρ | N·s/m³ | acoustic impedance |
a | m/s² | particle acceleration |
I | W/m² | sound intensity |
E | W·s/m³ | sound energy density |
Pac | watts | sound power or acoustic power |
A | m² | Area |
[edit] Distance law
When measuring the sound created by an object, it is important to measure the distance from the object as well, since the sound pressure decreases with distance from a point source with a 1/r relationship (and not 1/r2, like sound intensity).The distance law for the sound pressure p in 3D is inverse-proportional to the distance r of a punctual sound source.




The sound pressure may vary in direction from the source, as well, so measurements at different angles may be necessary, depending on the situation. An obvious example of a source that varies in level in different directions is a bullhorn.
[edit] Sound pressure level
Sound pressure level (SPL) or sound level


Sometimes variants are used such as dB (SPL), dBSPL, or dBSPL. These variants are not recognized as units in the SI.[3] The unit dB (SPL) is sometimes abbreviated to just "dB", which can give the erroneous impression that a dB is an absolute unit by itself.
The commonly used reference sound pressure in air is

The distance of the measuring microphone from a sound source is often omitted when SPL measurements are quoted, making the data useless. In the case of ambient environmental measurements of "background" noise, distance need not be quoted as no single source is present, but when measuring the noise level of a specific piece of equipment the distance should always be stated. A distance of one metre (1 m) from the source is a frequently-used standard distance. Because of the effects of reflected noise within a closed room, the use of an anechoic chamber allows for sound to be comparable to measurements made in a free field environment.
The lower limit of audibility is therefore defined as SPL of 0 dB, but the upper limit is not as clearly defined. While 1 atm (SPL of 194 dB) is the largest pressure variation an undistorted sound wave can have in Earth's atmosphere, larger sound waves can be present in other atmospheres or other media such as under water, or through the Earth.
Ears detect changes in sound pressure. Human hearing does not have a flat spectral sensitivity (frequency response) relative to frequency versus amplitude. Humans do not perceive low- and high-frequency sounds as well as sounds near 2,000 Hz, as shown in the equal-loudness contour. Because the frequency response of human hearing changes with amplitude, three weightings have been established for measuring sound pressure: A, B and C. A-weighting applies to sound pressures levels up to 55 dB, B-weighting applies to sound pressures levels between 55 and 85 dB, and C-weighting is for measuring sound pressure levels above 85 dB.[citation needed]
In order to distinguish the different sound measures a suffix is used: A-weighted sound pressure level is written either as dBA or LA. B-weighted sound pressure level is written either as dBB or LB, and C-weighted sound pressure level is written either as dBC or LC. Unweighted sound pressure level is called "linear sound pressure level" and is often written as dBL or just L. Some sound measuring instruments use the letter "Z" as an indication of linear SPL.
[edit] Multiple sources
The formula for the sum of the sound pressure levels of n incoherent radiating sources is[edit] Examples of sound pressure and sound pressure levels
Sound pressure in air: ![]() | This table needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (March 2009) |
Source of sound | Sound pressure | Sound pressure level |
---|---|---|
Sound in air | pascal RMS | dB re 20 μPa |
Shockwave (distorted sound waves > 1 atm; waveform valleys are clipped at zero pressure) | >101,325 Pa | >194 dB |
Theoretical limit for undistorted sound at 1 atmosphere environmental pressure | 101,325 Pa | ~194.094 dB |
Stun grenades | 6,000–20,000 Pa | 170–180 dB |
Rocket launch equipment acoustic tests | ~4000 Pa | ~165 dB |
Simple open-ended thermoacoustic device[6] | 12,619 Pa | 176 dB |
.30-06 rifle being fired 1 m to shooter's side | 7,265 Pa | 171 dB (peak) |
M1 Garand rifle being fired at 1 m | 5,023 Pa | 168 dB |
Jet engine at 30 m | 632 Pa | 150 dB |
Threshold of pain | 63.2 Pa | 130 dB |
Vuvuzela horn at 1 m | 20 Pa | 120 dB(A)[7] |
Hearing damage (possible) | 20 Pa | approx. 120 dB |
Jet engine at 100 m | 6.32 – 200 Pa | 110 – 140 dB |
Chainsaw at 1 m | 6.3 Pa | 110 dB[8] |
Jack hammer at 1 m | 2 Pa | approx. 100 dB |
Traffic on a busy roadway at 10 m | 2×10−1 – 6.32×10−1 Pa | 80 – 90 dB |
Hearing damage (over long-term exposure, need not be continuous) | 0.356 Pa | 85 dB[9] |
Passenger car at 10 m | 2×10−2 – 2×10−1 Pa | 60 – 80 dB |
EPA-identified maximum to protect against hearing loss and other disruptive effects from noise, such as sleep disturbance, stress, learning detriment, etc. | 70 dB[10] | |
Handheld electric mixer | 65 dB | |
TV (set at home level) at 1 m | 2×10−2 Pa | approx. 60 dB |
Washing machine, dishwasher | 42-53 dB[11] | |
Normal conversation at 1 m | 2×10−3 – 2×10−2 Pa | 40 – 60 dB |
Very calm room | 2×10−4 – 6.32×10−4 Pa | 20 – 30 dB |
Light leaf rustling, calm breathing | 6.32×10−5 Pa | 10 dB |
Auditory threshold at 1 kHz | 2×10−5 Pa | 0 dB[9] |
[edit] See also
- Acoustics
- Amplitude
- Decibel, especially the Acoustics section
- Phon (unit)
- Loudness
- Sone (unit)
- Sound level meter
- Sound power level
- Stevens' power law
- Weber–Fechner law, especially The case of sound
[edit] Notes
- ^ Sometimes reference sound pressure is denoted p0, not to be confused with the (much higher) ambient pressure.
[edit] References
- ^ "What is acoustic impedance and why is it important?". http://www.phys.unsw.edu.au/jw/z.html. Retrieved 2011-08-11.
- ^ Bies, David A., and Hansen, Colin. (2003). Engineering Noise Control.
- ^ Taylor 1995, Guide for the Use of the International System of Units (SI), NIST Special Publication SP811
- ^ C. L. Morfey, Dictionary of Acoustics (Academic Press, San Diego, 2001).
- ^ Glossary of Noise Terms — Sound pressure level definition
- ^ Hatazawa, M., Sugita, H., Ogawa, T. & Seo, Y. (Jan. 2004), ‘Performance of a thermoacoustic sound wave generator driven with waste heat of automobile gasoline engine,’ Transactions of the Japan Society of Mechanical Engineers (Part B) Vol. 16, No. 1, 292–299. [1]
- ^ Swanepoel, De Wet; Hall III, James W; Koekemoer, Dirk (February 2010). "Vuvuzela – good for your team, bad for your ears" (PDF). South African Medical Journal 100 (4): 99–100. PMID 20459912. http://www.scielo.org.za/pdf/samj/v100n2/v100n2a15.pdf.
- ^ "Decibel Table - SPL - Loudness Comparison Chart". "sengpielaudio". http://www.sengpielaudio.com/TableOfSoundPressureLevels.htm. Retrieved 5 Mar 2012.
- ^ a b William Hamby. "Ultimate Sound Pressure Level Decibel Table". Archived from the original on 2010-07-27. http://www.webcitation.org/5rXlLRYsP.
- ^ EPA Identifies Noise Levels Affecting Health and Welfare, 1974-04-02, http://www.epa.gov/aboutepa/history/topics/noise/01.html, retrieved 2010-11-01
- ^ "Active Water". Bosch. p. 17. http://www.boschappliances.com.au/Files/Bosch/Au/au_en/ProductAnnouncement/Images/Bosch_Active_Water.pdf. Retrieved 4 March 2012.
- Beranek, Leo L, "Acoustics" (1993) Acoustical Society of America. ISBN 0-88318-494-X
- Morfey, Christopher L, "Dictionary of Acoustics" (2001) Academic Press, San Diego.
[edit] External links
- Sound pressure and Sound power – Effect and Cause
- Conversion of sound pressure to sound pressure level and vice versa
- Table of Sound Levels - Corresponding Sound Pressure and Sound Intensity
- Ohm's law as acoustic equivalent - calculations
- Definition of sound pressure level
- A table of SPL values
- Relationships of acoustic quantities associated with a plane progressive acoustic sound wave - pdf
- Sound pressure and sound power - two commonly confused characteristics of sound
- How many decibels is twice as loud? Sound level change and the respective factor of sound pressure or sound intensity
- Decibel (loudness) comparison chart
Tidak ada komentar:
Posting Komentar